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Abstract. In this chapter, we give a brief introduction to speech-driven
applications in order to motivate why it is desirable to automatically rec-
ognize particular speaker characteristics from speech. Starting from these
applications, we derive what kind of characteristics might be useful. After
categorizing relevant speaker characteristics, we describe in more detail
language, accent, dialect, idiolect, and sociolect. Next, we briefly summa-
rize classification approaches to illustrate how these characteristics can
be recognized automatically, and conclude with a practical example of a
system implementation that performs well on the classification of various
speaker characteristics.

Keywords: language-dependent speaker characteristics, automatic
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1 Introduction

When we talk to someone face-to-face, we can immediately tell if we met this
person before or not. We are extremely fast and accurate when in comes to rec-
ognizing and memorizing people, even when they are less familiar or we did not
see them for a long time. However, we can do much more than just discriminat-
ing familiar from unfamiliar people. Pretty quickly we assess a person’s gender,
age, native language, emotional or attentional state, and educational or cultural
background. This is not too surprising when we consider our heritage, where our
survival depends on distinguishing tribe members from enemies, liars from trust-
worthy people, prey from predators. In modern society we will not outright die
from misjudging people, but our social behavior, and often our career and suc-
cess relies on assessing people and their behavior. We are so accustomed to these
skills that human beings who do not have this ability draw a lot of attention [1].

To size up a person, we use visual cues such as general appearance, health
conditions, and clothing. The importance of the latter was expressed by the
Roman rhetorician Quintilian, who said ”vestis virum reddit -clothes make the
man”. However, humans also heavily rely on auditory cues when characterizing
people. When we speak to a person over the phone, we identify a familiar voice. If
we do not know the speaker, we still form an impression from the speaker’s voice.
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With surprising accuracy we can judge height, sex, and age from a speaker’s voice
[2], but we also sort speakers along categories, such as idiolect, language, dialect,
credibility, confidence, educational background, and much more. Apparently, we
classify people based on various characteristics and many of those can be derived
from speech alone.

In this issue we classify speakers according to characteristics that are derived
solely from their speech, as expressed in the definition of speaker classification
to be ”the process of assigning a vector of speech features to a discrete speaker
class”. This definition discriminates speaker classification from other biometrical
classification techniques, in which intrinsic characteristics of a person are derived
for example from fingerprints, retinal pattern, facial features, or DNA structure.
It also differentiates speaker classification from techniques based on artifacts
such as badges, business cards, or clothing. As mentioned above, humans are
pretty good in this assignment process, however the objective of this chapter
focus on an automatic assignment process performed by machines. While we
see from the above argumentation that speaker characterization is crucial to
our social life, it is not immediately clear which benefits we get from automatic
speaker characterization performed by machines.

In the remainder of this chapter we will discuss why the classification of
speaker characteristics is useful. This will be motivated by examples of real-
world applications, which rely on the knowledge of characteristics of its users.
We will highlight the most important speaker characteristics, categorize them
according to some proposed schemes, and explain how these characteristics can
be automatically derived by machines. The chapter concludes with a practical
implementation example of a particular classification algorithm and its results.

2 Why? - Applications to Speaker Characteristics

Humans are ”wired for speech”. This term was coined by Clifford Nass and
colleagues [3] and refers to the fact that even though people know that they are
dealing with an automated system, if it takes speech as input and delivers speech
as output, they treat machines as if they were people - with the same beliefs and
prejudices. People behave and speak to the machine as if it were a person, they
raise their voice to make the machine better understand, yell at it when they
get angry, and say good-bye at the end of a ”conversation”. At the same time,
people infer a certain personality from the way the machine talks and the words
it uses although it is absurd to assume that the machine has a personality (see
also [4]). Nass showed for example that it is crucial for a speech-driven interface
to match the emotion in the output to the (expected) emotional state of the
user [5], and that users regard a computer voice as more attractive, credible and
informative if it matched their own personality [6].

Despite this need for personalized and customized system output, the body
of research is rather small. This fact has recently been addressed in a special
session on Speech Communication [7], and we expect that personalized output
will get more attention in the future. In contrast, a large body of work has been
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dedicated to adapting speech-based systems to better match the expected user
input. The aspect of personalization and customization has been proven to be
highly effective in the context of real-world applications. In the following we will
briefly introduce some of the research and highlight those speaker characteris-
tics that turned out to be relevant to the process of adapting applications to
the users’ spoken input. Furthermore, we will describe applications that rely on
the recognition of speaker identity. This brief overview is divided into work on
classical human-computer interaction systems and human-centered or computer
mediated human-human communication systems.

2.1 Human-Computer Interaction Systems

Human-Computer Interaction refers to the interaction between people (users)
and computers taking place at the speech-driven user interface. Examples of
applications are telephone-based services using dialog interfaces, authentication
systems that assess the user’s identity to perform (remote) banking or business
transactions, and access control systems to allow physical entry to facilities or
virtual rooms such as a computer network.

Today, many banking and other business transactions are done remotely over
the phone or via internet. To avoid misuse it is critical to ensure that the user is
who s/he claims to be. Authentication is the process of assessing the identity
of a speaker and checking if it corresponds to the claimed identity. Only if the
speaker’s identity is verified, access is granted. Most of current authentication
systems still use textual information provided by users such as passwords, So-
cial Security Numbers, PINs and TANs. However, as the number of phone- and
internet-based services increases, juggling numerous accounts and passwords be-
comes complicated and cumbersome for the user and the risks of fraud escalate.
Performing identity verification based on the user’s voice appears to be a possi-
ble alternative and therefore, service companies heavily investigate the potential
of speaker verification. Different from authentication, the task in Access Con-
trol is to assess the identity of a speaker and to check if this particular speaker
belongs to a group of people that get access to for example physical facilities or
virtual rooms such as computer networks and websites. Both system types are
based on the speaker characteristic identity. An early example of a real-world ap-
plication was the voice verification system at Texas Instruments that controlled
the physical entry into its main computer center [8].

Spoken Dialogs Systems play a major role in modern life, become increas-
ingly pervasive, and provide services in a growing number of domains such as
finance [9], travel [10], scheduling [11], tutoring [12], or weather [13]. In order
to provide timely and relevant service, the systems need to collect information
from the user. Therefore, a service dialog will be faster and more satisfying when
such information can be gathered automatically. Hazen and colleagues [14] for
example included automatic recognition of speaker identity to personalize the
system according to pre-collected information from registered users and to pre-
vent unauthorized access to sensitive information.
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Most telephone-based services in the U.S. today use some sort of spoken di-
alog systems to either route calls to the appropriate agent or even handle the
complete service by an automatic system. Muthusamy [15] developed a front-
end system to the 911 emergency phone line, which automatically assessed the
language of the speaker to route the call to a native agent. One of the early and
successful dialog systems, with wide exposure in the U.S. was the AT&T cus-
tomer care system ”How May I Help You?” developed by Gorin and colleagues
[16]. Their studies of vast amounts of recording, logs, and transcriptions, pro-
pelled research on dialog systems but also showed that automatic systems fail
to predict dialog problems. Batliner and colleagues [17] looked at emotion as in-
dicator of ”trouble in communication” and developed a call routing system that
automatically passes over to human operators when users get angry. Polzin [18]
argued that human-computer interfaces should in general be sensitive to users’
emotion. He created an interface that first detects emotion expressed by the user
and then adjusts the prompting, feedback, and dialog flow of the system accord-
ingly. The system prompts sound more apologetic when a user seemed annoyed,
and feedback is more explicit when the user’s voice indicates frustration. Raux
[19] used speaker characteristics such as agegroup and nativeness to tailor the
system output to elderly and non-native users with limited abilities in English
to make the speech output more understandable. Nass [3] found that people
infer a certain personality from the way the machine talks and have prejudices
about gender, regional dialects or foreign accents, geographical background, and
race. It is expected that these human factors will be taken into account in future
systems.

Computer-aided Learning and Assessment tools are another example
of human-computer interaction applications. Speech input functionality is par-
ticularly desirable in the context of language learning [20]. Advanced systems
provide interactive recording and playback of user’s input speech, feedback re-
garding acoustic speech features, recognizing the input, and interpreting interac-
tion to act as a conversation partner. Especially the latter three functionalities
are very challenging due to the naturally broad range of accent and fluency of
its users. Learning systems are usually customized to the native language L1 of
the language learner to overcome robustness issues [21], but may have to be tai-
lored towards particular dialects, especially in countries of diglossia. Automatic
assessment of proficiency level is deemed important, particularly in the light of
strong imbalance between number of learners and number of teachers, see for ex-
ample the E-Language Learning System program between the U.S. Department
of Education and the Chinese Ministry of Education [20].

New challenges arise when applications are brought to the developing world
to users with limited access, exposure, and with a different cultural basis for un-
derstanding. Barnard and colleagues built a telephone-based service in rural
South-Africa [22]. Some of their findings are surprising and not foreseen, such as
the request for louder prompts (due to collectivsm bystanders who share the con-
versation) and the fact that silence after prompt does not elicit an answer due to
uncertainty avoidance in this cultural background. The last example emphasizes
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that many aspects of speech-driven systems have not been fully understood or
investigated. We expect that with the increasing application of these systems, the
research on automatic classification of speaker characteristics will be intensified
to make systems more useful for a large population of users.

2.2 Human-Centered Systems

Human-Centered Systems refer to computer services that are delivered in an im-
plicit, indirect, and unobstrusive way to people whose primary goal is to interact
with other people. Computers stay in the background - like electronic butlers -
attempting to anticipate and serve people’s needs. Thus, computers are intro-
duced into a loop of humans interacting with humans, rather than condemning a
human to operate in a loop of computers (see CHIL - Computers in the Human
Interaction Loop [23]).

Emerging computer services are Smart Room Environments [24], in which
computers watch and interpret people’s actions and interactions in order to sup-
port communication goals. One implementation example is an automatic meet-
ing support system, which tracks what was said, who said it, to whom, and how
it was said [25]. By annotating speech recognition output with the speakers’
identity, attentional state, and emotional state, the meeting notes can be prop-
erly indexed, skimmed, searched, and retrieved. Infrastructures such as socially-
supportive workspaces [23] or augmented multiparty interactions [26] foster co-
operation among meeting participants, including multimodal interface to enter
and manipulate participants’ contributions, and facilitator functionalities that
monitor group activities. Other services implemented within the framework of
CHIL [23] include better ways of connecting people and supporting human mem-
ory. For all of these services, computers need to automatically gather context-
and content-aware information such as topic, meeting type, or environmental
conditions, and participant characteristics such as attentional state.

An example of computer-mediated applications that support human-to-
human communication is Speech Translation [27,28,29]. The task of speech
translation is to recognize incoming speech from the source language, to trans-
late the text of the recognizer output into text of the target language, and then
synthesize the translated text to audible speech in the target language. Most
applications are designed as two parallel one-directional systems, some systems
perform automatic language identification to route the speech into the corre-
sponding system [30]. Ideally, the translation should not only preserve the orig-
inal meaning of the spoken input, but also reflect other aspects of the message
such as level of politeness, respect, directness, or wittiness. Some of these aspects
might be directly derived from speaker characteristics, such as the generation
of appropriate synthesized output based on the speaker’s gender, or based on
the identification of the emotional state of a speaker in order to interpret emo-
tional cues and wittiness. Beyond this, some aspects require knowledge about the
relationship between the speaker and the listener. In some languages, the word
usage changes significantly depending on the hierarchy between sender and re-
ceiver, and using the wrong form may offend the receiver. Japanese is such an
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example, where Dr. Sadaoki Tomuko would be addresses as Tomuko-san if he is
a close friend or Tomuko-sensei if he is the boss of the sender. To address this
problem, the English-Japanese JANUS translation system [31] was designed to
switch between politeness levels.

2.3 Adaptation of System Components

As described above, the classification of speaker characteristics plays a crucial
role in customization and personalization of applications. Beyond that, speaker
characteristics need to be assessed in order to adapt system components, partic-
ularly the speech recognition front-end to the specific voice characteristics of the
speaker and the content of what was spoken. This adaptation process has been
proven to dramatically improve the recognition accuracy, which usually carries
over favorably to the performance of the overall system.

Adaptation of speech recognition is traditionally mostly concerned with the
adaptation of the acoustic and language model. In early days the acoustic model
adaptation was performed by an enrollment procedure that asked the user to
reading text prompts. This method might be quite helpful to power users of
the system and allows to store and pre-load speaker-specific acoustic models.
However, this enrollment procedure is time consuming. Therefore, more recent
systems rely on speaker adaptive training methods, which first determine the
speaker’s identity and then apply acoustic model adaptation based on the as-
sumed identity. Some applications rely on broader speaker classes such as gender
or agegroup to load pre-trained models [32]. For the purpose of dictionary and
language model adaptation, the topic or the content of the spoken input is an-
alyzed and used for adaptation [33]. Beside the speech recognition front-end,
other dialog components may benefit from this technique as well, by modeling
various dialog states, or detecting keywords to trigger state switches.

Code switching, i.e. switching the language between utterances, can not be
handled by monolingual speech recognition systems. Efforts have been made to
develop multilingual speech recognition system [34], but so far it looks favorable
to design dedicated language identification modules that direct the speech input
to the appropriate monolingual recognition system [30]. Idiolect has shown to
have a significant influence on speaker recognition [35] and accent is particularly
known to have a detrimental effect on speech recognition performance. Conse-
quently, much effort has been put into the classification of these characteristics
and the appropriate adaptation of system components. For an overview, we refer
the reader to [36].

2.4 Summary

We conclude this section with a table that summarizes those speaker character-
istics, which are most relevant to human-computer and human-centered appli-
cations. In addition, it gives references to implementation examples, or studies
thereof. Some of the referenced applications are not covered in this section,
as they are described in large detail elsewhere in this issue. Among those are
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Forensic applications, where the characteristics gender, age, medical conditions,
dialect, accent, and sociolect play a pivotal role. An overview of forensic appli-
cations is provided by Jessen in this issue [37]. Furthermore, we did not discuss
emerging applications for home parole, detection of deception, or fraud in the
context of Law Enforcement, which are concerned with speaker’s identity or
emotion. An introduction to this field concerning the latter characteristic is given
by Eriksson in this issue [38].

Table 1. Speaker Characteristics and Applications

Characteristic Applications, Reference

identity Transaction Authentication [39]; Access Control [8]
Dialog Systems [14]; Meeting Browser [25]

gender Dialog Systems [32]; Speech Synthesis [3]
Forensics [37]

age Dialog Systems [32]; Forensics [37]
Speech Synthesis [19]

health Forensics [37]
language Call Routing [15]; Speech Translation [30]
dialect Forensics [37]
accent Language Learning [21]; Dialog Systems

Speech Synthesis [19]; Forensics [37]
Assessment Systems [20]

sociolect Forensics [37]
idiolect Speaker Recognition [35]; Forensics [37]
emotional state Speech Translation [40]; Meeting Browser [25]

Law Enforcement [38]; Dialog Systems [18,17]
attentional state Human-Robot Interaction [41]; Smart Workspaces [26,23,24]
relationship/role Speech Translation [31]
cultural background Dialog Systems [22]

3 What? A Taxonomy of Speaker Characteristics

The discrete speaker classes, to which vectors of speech features are assigned,
characterize a speaker. We impose here a hierarchical structure on those char-
acteristics, which we consider to be relevant to speech-based applications as
described above.

Figure 1 shows the propose taxonomy, distinguishing first and foremost be-
tween physiological and psychological aspects of speaker characteristics. The
latter ones are further divided into aspects which concern the individual speaker
versus those that concern a speaker in a particular community or collective. For
example, a speaker may be in the role of a professor for the students at univer-
sity, a wife to her husband at home, or a mother to her child. The authority of a
speaker may vary with the context he or she is talking about, the hierarchy de-
pends on whom s/he talks to, the credibility may depend on whom s/he is doing
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Speaker Characteristics

physiological psychological
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Fig. 1. Taxonomy of Speaker Characteristics

business with, and so on. That is, the category ”collective” requires a definition
of a relation between sender and receiver.

This taxonomy is not without limitations, for example it does not cover all
aspects of an individual (e.g. weight, height, smoking or drinking habits, demo-
graphics such as race, income, mobility, employment status) or special aspects
such as speech pathologies, but rather focus on those characteristics we consider
to be relevant (and assessable) in the context of typical speech applications.

Furthermore, the taxonomy does not indicate, which level of linguistic in-
formation are necessary to discriminate between characteristics. For example,
low level acoustic features are usually sufficient to discriminate gender; phonetic,
phonologic, and lexical knowledge might be required to discriminate idiolects,
while it needs semantic and syntactic information to differentiate sociolects.
Even pragmatics might be necessary to derive the role of speakers and their
relationship to a collective. While low level physical aspects are relatively easy
to automatically extract, high level cues are difficult to assess. As a consequence
most automatic systems for speaker recognition still concentrate on the low-level
cues.

Another aspect, which is not reflected in the taxonomy is the discrimination
between stable versus transient characteristics. Examples for stable charac-
teristics are speaker identity and gender. Transient characteristics change over
time. This aspect may play an important role for practical applications, espe-
cially if a characteristic underlies dynamic changes over the duration of a single
audio recording session. While locally stable characteristics such as age, health,
language, accent, dialect, and idiolect may change very slowly compared to the
duration of a recording session, characteristics such as attentional and emotional
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state of a speaker, as well as the context or topic change dynamically. Also, the
relationship of a speaker to the listener may change over the course of an in-
teraction. Other characteristics such as sociolect may depend on the collective.
Idiolect, accent and dialect are functions of the spoken language, but are usually
rather stable within the same language. Therefore, if a speaker switches lan-
guages within one recording session, the class assignments for idiolect, accent
and dialect usually switch along.

3.1 Language-Dependent Speaker Characteristics

In the following we subsume the five characteristics language, accent, dialect,
idiolect, and sociolect under the term language-dependent speaker character-
istics as they are somewhat dependent on the actual language spoken by the
speaker.

Drawing the line between genuinely different languages and dialects of the
same language is a subject of various disputes. We define a dialect as a regional
variant of a language that involves modifications at the lexical and grammat-
ical level. In contrast accent is a regional variant affecting only the pronun-
ciation, mostly phonetic realizations but also prosody, allophonic distribution,
and fluency. British Received Pronunciation for example is an accent of English,
whereas Scottish English would be considered a dialect since it often exhibits
grammatical differences, such as ”Are ye no going?” for ”Aren’t you going?”
(see [42]). Dialects of the same language are assumed to be mutually intelligible,
while different languages are not, i.e. languages need to be explicitly learned
by speakers of other languages. In addition, languages have a distinct literary
tradition, while dialects are primarily spoken varieties without literary tradition.

These definitions are greatly simplified. Many languages lack a writing sys-
tem and thus do not have any literary tradition. Also, the distinction between
languages and dialects is a continuum rather than a binary decision, and of-
ten motivated by sociopolitical rather than linguistic considerations. Chinese
languages, for example are unified by a common writing system but have a
large number of mutually unintelligible varieties that differ substantially in pro-
nunciation, vocabulary, and grammar. While most linguists would argue that
these variations are different languages, they are officially labeled as dialects to
promote the concept of Chinese national unity (see [42]). The exact opposite
happened for Serbo-Croatian, the official language of former Yugoslavia. After
the breakup, the languages Croatian and Serbian became to be described as
separate languages to emphasize national independence.

Apart from regional variations, languages exhibit idiolectal and sociolectal
variation. The term idiolect describes consistent speech patterns in pronunci-
ation, lexical choice, or grammar that are specific to a particular speaker. Idi-
olectal patterns may include speaker-specific recurrent phrases (e.g. a tendency
to start sentences with Well, to be honest...), characteristic intonation patterns,
or divergent pronunciations (e.g. nucular instead of nuclear) (see [42]). A soci-
olect is a set of variations that are characteristic of a group of speakers defined
not by regional cohesion but by social parameters, such as economic status, age,
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profession, etc. Since dialects often have a particular social status, some vari-
ants may be considered simultaneously a dialect and a sociolect. For example,
standard German has close similarities to dialects spoken in Hannover and the
state of Saxony-Anhalt, the latter being the origin of Martin Luther whose bible
translation formed the basis for the development of standard German. Thus,
while being a dialect in these particular areas, standard German is also a so-
ciolect in that it carries a certain prestige from being the national language of
Germany, used throughout the country in broadcast, press, and by people of
higher education.

Despite significant efforts to make speech recognition systems robust for real-
world applications, the problem of regional variations remains to be a significant
challenge. Word error rates increase significantly in the presence of non-native
[43,44] and dialectal speech [45]. One of the main reasons for this performance
degradation is that acoustic models and pronunciation dictionaries are tailored
toward native speakers and lack the variety resulting from non-native pronuncia-
tions. In addition, the lexicon and language model lack the dialectal variety. The
straight-forward solution of deploying dialect- or accent-specific speech recogniz-
ers is prohibited by two practical limitations: lack of platform resources and lack
of data. Particularly embedded environments such as mobile or automotive ap-
plications limit the integration of multiple recognizers within one system. Even if
resources permit the deployment of dialect or accent specific systems, the variety
usually leads to very limited data resources. As a consequence real-world appli-
cations require cross-dialect or non-native recognition. The reader is referred to
[36] for a comprehensive introduction into this area. Idiolectal features can be
used for tailoring a speech application to a specific user, for instance in training
a speech-based automated office assistant. In addition, idiolectal features have
been shown to be helpful in automatic speaker identification [35]. Similarly, so-
ciolectal features can be taken into account when developing an application for
an entire user group.

Individual

accent

Phonetic
Lexical

Grammar

idiolect

dialect

Collective

sociolect

language

Fig. 2. Language-dependent Characteristics
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Multilingual settings may impact idiolectal and sociolectal variations, for ex-
ample [46] found evidence that bilingual speakers change their L1 speech after
spending time in L2-speaking environment. Several techniques to improve speech
recognition performance in the presence of code-switching have been investi-
gated [47,48]. Code-switching refers to the act of using words or phrases from
different languages in one sentence, a typical behavior of multilingual speakers
engaged in informal conversations.

Figure 2 summarizes the similarities and differences among the language-
dependent characteristics language, dialect, accent, idiolect, and sociolect. Main
discriminating factors are the effects on linguistic aspects and whether these
characteristics apply to individuals or a collective.

4 How? - Automatic Classification of Speaker
Characteristics

Probably the most extensively studied and prominent tasks that investigate the
”assignment of speech features to discrete speaker classes” are speaker recognition
(who is speaking, class=identity) and language identification (which language is
spoken, class=language). Speech recognition (what is said, class=content) tackles
a much broader problem but could be viewed as part of ”Speaker Classification”
when high-level characteristics, such as content, topic, or role are investigated. Re-
cently, the three tasks grow closer together, as it becomes evident that solutions to
one task may benefit the performance of the other, and that all of them need to be
studied in order to improve speech-based real-world applications. In the following
we will briefly survey language identification and speaker recognition. This section
it not meant to give a comprehensive introduction, for more details the reader is
referred to in-depth overviews, such as [49] for language identification and [39,50]
for speaker recognition. A good introduction into speech recognition can be found
in [51].

4.1 Speaker Recognition

Classification approaches can be discriminated by the level of linguistic knowl-
edge applied to the solution of the classification task. Reynolds defines a hierar-
chy of perceptual cues that humans apply for the purpose of recognizing speakers
[39]. On the highest level, people use semantics, diction, idiolect, pronunciation
and ideosynchrasies, which emerge from the socio-economic status, education,
and place of birth of a speaker. On the second level are features such as prosodic,
rhythm, speed, intonation, and volume of modulation, which discriminate per-
sonality and parental influence of a speaker. On the lowest linguistic level people
use acoustic aspects of sounds, such as nasality, breathiness or roughness, which
allow to draw conclusions about the anatomical structure of the speaker’s vocal
apparatus. While low level physical aspects are relatively easy to extract auto-
matically, high level cues are difficult to assess. As a consequence most automatic
systems for speaker recognition still concentrate on the low-level cues.
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Conventional systems apply Gaussian Mixture Models (GMM) to capture
frame-level characteristics [52]. Since the speech frames are assumed to be inde-
pendent from each other, GMMs often fail to discriminate speaker-specific in-
formation that evolves over more than one frame. Therefore, GMMs are poorly
suited for discriminating speakers based on higher-level differences, such as idi-
olect. Furthermore, GMMs are found to be challenged by mismatching acoustic
conditions as they solely rely on low-level speech-signal features. To overcome
these problems, speaker recognition recently focus on including higher-level lin-
guistic features, such as phonetic information emerging from speaker ideosyn-
chrasies [35]. This area is called phonetic speaker recognition and applies relative
frequencies from phone n-grams [53]. This approach is currently intensively stud-
ied [39] and extended by different modeling strategies, variations of statistical
n-gram models [54], variations of classifiers like Support Vector Machines [55],
and modeling of cross-stream dimensions to discover underlying phone depen-
dencies across multiple languages [54,56].

4.2 Language Identification

Similar to speaker recognition, language identification approaches can be catego-
rized by the level of linguistic information, which is applied to the classification
task. [49] discriminates the signal processing level, the unit level (e.g. phones), the
word level, and the sentence level. According to these levels, he distinguishes be-
tween acoustic approaches to language identification that apply spectral features
derived from speech segments [57], phonotactic approaches, which use the con-
traints of relative frequencies of sound units [58], along with various derivatives
using multilingual phone recognizers as tokenizer [59], extended n-grams [60],
cross-stream modeling [61], and combinations of GMMs and phonotactic mod-
els [62]. Furthermore, Navrátil [49] lists prosodic approaches, which use tone,
intonation, and prominence [63], and those approaches that apply full speech
recognizers to language identification [64].

5 A Classification System for Speaker Characteristics

In this section we present a general classification system, which applies one com-
mon framework to the classification of various speaker characteristics, namely
identity, gender, language, accent, proficiency level, and attentional state of a
speaker. The framework uses high-level phonetic information to capture speak-
ers’ ideosynchrasies, as initially proposed by [58] in the context of language
identification and [35] in the context of speaker recognition. The basic idea is to
decode speech by various phone recognizers and to use the relative frequencies of
phone n-grams as features for training speaker characteristic models and for their
classification. We enrich existing algorithms by applying the approach to vari-
ous speaker characteristics, by using a larger number of language independent
phone recognizers, and by modeling dependencies across multiple phone streams
[54]. Furthermore, we investigate different decision rules, study the impact of
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the number of languages involved, and examine multilingual versus multi-engine
approaches with respect to classification performance.

5.1 Multilingual Phone Sequences

Our experiments were conducted using phone recognizers of the GlobalPhone
project [65] available in 12 languages Arabic (AR), Mandarin Chinese (CH),
Croatian (KR), German (DE), French (FR), Japanese (JA), Korean (KO), Por-
tuguese (PO), Russian (RU), Spanish (SP), Swedish (SW), and Turkish (TU).
These phone recognizers were trained using the Janus Speech Recognition
Toolkit. The acoustic model consists of a context-independent 3-state HMM
system with 16 Gaussians per state. The Gaussians are based on 13 Mel-scale
cepstral coefficients and power, with first and second order derivatives. Following
cepstral mean subtraction, linear discriminant analysis reduces the input vector
to 16 dimensions. Training includes vocal tract length normalization (VTLN)
for speaker normalization. Decoding applies unsupervised MLLR to find the
best matching warp factor for the test speaker. Decoding is performed with
Viterbi search using a fully connected null-grammar network of mono-phones,
i.e. no prior knowledge about phone statistics is used for the recognition process.
Figure 3 shows the correlation between number of phone units and phone error
rates for ten languages.

To train a model for a particular speaker characteristic, a language depen-
dent phonetic n-gram model is generated based on the available training data.
In our experiments we train phonetic bigram models created from the CMU-
Cambridge Statistical Language Model Toolkit [19]. All phonetic bigram mod-
els are directly estimated from the data, rather than applying universal back-
ground models or adaptation with background models. No transcriptions of
speech data are required at any step of model training. Figure 4 shows the
procedure of training for a speaker identity model for speaker k. Each of the m
phone recognizers (PR1, . . . , PRm) decode the training data of speaker k to pro-
duce m phone strings. Based on these phone strings m phonetic bigram models
(PM1,k, . . . , PMm,k) are estimated for speaker k. Therefore, if an audio segment
needs to be classified into one of an n-class speaker characteristic, the m phone
recognizers will produce m × n phonetic bigram models.

During classification, each of the m phone recognizers PRi, as used for pho-
netic bigram model training, decodes the test audio segment. Each of the re-
sulting m phone strings is scored against each of n bigram models PMi,j . This
results in a perplexity matrix PP , whose PPi,j element is the perplexity pro-
duced by phonetic bigram model PMi,j on the phone string output of phone
recognizer PRi. While we will explore some alternatives in later experiments,
our default decision algorithm is to propose a class estimate C∗

j by selecting the
lowest

∑
i(PP )i,j . Figure 5 depicts this procedure, which we refer to as MPM-pp.

In the following we apply the described MPM-pp classification approach to
a variety of classification tasks in the context of speaker characteristics, namely
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Fig. 3. Error rate vs number of phones for ten GlobalPhone languages

Fig. 4. Training of feature-specific phonetic models for 2 phone recognizers and a 3–
class problem

to the classification of identity, gender, accent, proficiency level, language, and
attentional state of a speaker.

5.2 Classification of Speaker Identity

In order to investigate robust speaker identification (SID) under far-field con-
ditions, a distant-microphone database containing speech recorded from various
microphone distances had been collected at the Interactive Systems Laboratory.
The database contains 30 native English speakers reading different articles. Each
of the five sessions per speaker are recorded using eight microphones in parallel:
one close-speaking microphone (Dis 0), one lapel microphone (Dis L) worn by
the speaker, and six other lapel microphones at distances of 1, 2, 4, 5, 6, and 8
feet from the speaker. About 7 minutes of spoken speech (approximately 5000
phones) is used for training phonetic bigram models.

Table 2 lists the identification results of each phone recognizer and the com-
bination results for eight language phone recognizers for Dis 0 under matching
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Fig. 5. MPM-pp classification block diagram

conditions. It shows that multiple languages compensate for poor performance
on single engines, an effect which becomes even more prominent for short test
utterances.

Table 3 compares the identification results for all distances on different test ut-
terance lengths under matched and mismatched conditions, respectively. Under
matched conditions, training and testing data are from the same distance. Under
mismatched conditions, we do not know the test segment distance; we make use
of all p = 8 sets of PMi,j phonetic bigram models, where p is the number of dis-
tances, and modify our decision rule to estimate C∗

j = minj (mink

∑
i PMi,j,k),

where i is the index over phone recognizers, j is the index over speaker phonetic
models, and 1 ≤ k ≤ p. The results indicate that MPM-pp performs similar un-
der matched and mismatched conditions. This compares quite favorable to the
traditional Gaussian Mixture Model approach, which significantly degrades un-
der mismatching conditions [66]. By applying higher-level information derived
from phonetics rather than solely from acoustics, we believe to better cover
speaker idiosyncrasies and accent-specific pronunciations. Since this informa-
tion is provided from complementary phone recognizers, we anticipate greater
robustness, which is confirmed by our results.

Table 2. MPM-pp SID rate on varying test lengths at Dis 0

Language 60 sec 40 sec 10 sec 5 sec 3 sec

CH 100 100 56.7 40.0 26.7
DE 80.0 76.7 50.0 33.3 26.7
FR 70.0 56.7 46.7 16.7 13.3
JA 30.0 30.0 36.7 26.7 16.7
KR 40.0 33.3 30.0 26.7 36.7
PO 76.7 66.7 33.3 20.0 10.0
SP 70.0 56.7 30.0 20.0 16.7
TU 53.3 50.0 30.0 16.7 20.0
Fusion 96.7 96.7 96.7 93.3 80.0
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Table 3. MPM-pp classification accuracy on varying test lengths under matched (left-
hand) and mismatched (right-hand) conditions

Matched Conditions Mismatched Conditions

Test Length 60s 40s 10s 5s 60s 40s 10s 5s
Dis 0 96.7 96.7 96.7 93.3 96.7 96.7 96.7 90.0
Dis L 96.7 96.7 86.7 70.0 96.7 100 90.0 66.7
Dis 1 90.0 90.0 76.6 70.0 93.3 93.3 80.0 70.0
Dis 2 96.7 96.7 93.3 83.3 96.7 96.7 86.7 80.0
Dis 4 96.7 93.3 80.0 76.7 96.7 96.7 93.3 80.0
Dis 5 93.3 93.3 90.0 76.7 93.3 93.3 86.7 70.0
Dis 6 83.3 86.7 83.3 80.0 93.3 86.7 83.3 60.0
Dis 8 93.3 93.3 86.7 66.7 93.3 93.3 86.7 70.0

5.3 Classification of Gender

The NIST 1999 speaker recognition evaluation set [67] with a total of 309 female
and 230 male speakers was applied to gender identification experiments [56]. For
each speaker, two minutes of telephone speech were used for training and one
minute of unknown channel type for testing. Experiments were conducted on
the MPM-pp approach. In addition, a different decision rule, MPM-ds was in-
vestigated. For the MPM-ds approach the perplexity was replaced by a decoding
score, i.e. the negative log probability distance score. For decoding, the equal-
probability phonetic bigram models were replaced by language-specific models,
resulting from training bigram phonetic models for each of the phone recognizers
and each gender category. For classification, each phone recognizer applied the
language-specific model. While the MPM-pp approach requires to only decode
with m recognizers, the MPM-ds approach requires to run m×n recognition pro-
cesses, where m refers to the number of phone recognizers and n to the number
of classes to be discriminated. Furthermore, the MPM-ds approach heavily de-
pends on reliable probability estimates from the phonetic models. However, the
amount of data available for gender classification was assumed to be sufficient
for this task. For testing, 200 test trials from 100 men and 100 women were ran-
domly chosen. Table 4 compares the results of the MPM-pp with the MPM-ds
decision rule. Both approaches achieved a 94.0% gender classification accuracy,
which indicates that comparable results can be achieved when enough data for
training is available. Earlier experiments on speaker identification showed that
MPM-pp clearly outperforms MPM-ds, most likely due to the lack of training
data for a reliable estimate of phonetic models [56].

5.4 Classification of Accent

In the following experiments we used the MPM-pp approach to differentiate be-
tween native and non-native speakers of English. Native speakers of Japanese
with varying English proficiency levels make up the non-native speaker set. Each
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Table 4. Comparison between MPM-pp and MPM-ds on gender classification

CH DE FR JA KR PO SP TU ALL

MPM-pp 88.5 89.5 89.0 86.5 87.5 89.0 92.0 90.0 94.0
MPM-ds 89.5 88.5 91.0 89.0 88.0 91.5 92.0 89.0 94.0

Table 5. Number of speakers, utterances, and audio length for native and non-native
classes

nspk nutt τutt

native non-native native non-native native non-native
training 3 7 318 680 23.1 min 83.9 min
testing 2 5 93 210 7.1 min 33.8 min

speaker read several news articles, training and testing sets are disjoint with
respect to articles as well as speakers. The acquisition of the database is de-
scribed in detail in [68]. The data used for the experiments are summarized in
Table 5.

In two sets of experiments, we first employ 6 of the above described Global-
Phone phone recognizers PRi ∈ {DE, FR, JA, KR, PO, SP} [69] and then aug-
ment these by a seventh language {CH} to study differences resulting from the
added language [70]. During classification of non-native versus native speak-
ers, the 7 × 2 phonetic bigram models produce a perplexity matrix for the test
utterance to which we apply the lowest average perplexity decision rule. On
our evaluation set of 303 utterances for 2–way classification between native and
non–native utterances, the classification accuracy improves from 93.7% using
models in 6 languages to 97.7% using models in 7 languages. An examination
of the average perplexity of each class of phonetic bigram models over all test
utterances reveals the improved separability of the classes, as shown in Table
6. The average perplexity of non-native models on non-native data is lower
than the perplexity of native models on that data, and the discrepancy be-
tween these numbers grows after adding training data decoded in an additional
language.

Table 6. Average perplexities for native and non-native classes using 6 versus 7 phone
recognizers

Phonetic 6 languages 7 languages
model

non- native native non-native native
non-native 29.1 31.7 28.9 34.1
native 32.5 28.5 32.8 31.1
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5.5 Classification of Proficiency Level

We apply the MPM-pp approach to classify utterances from non-native speakers
according to assigned speaker proficiency classes using the same data as in the
accent classification task. The original non-native data had been labeled with the
proficiency of each speaker on the basis of a standardized evaluation procedure
conducted by trained proficiency raters [68]. All speakers received a floating
point grade between 0 and 4, with a grade of 4 reserved for native speakers. The
distribution of non-native training speaker proficiencies showed that they fall into
roughly three groups. We created three corresponding classes for the attempt to
classify non-native speakers according to their proficiency. Class 1 represents the
lowest proficiency speakers, class 2 contains intermediate speakers, and class 3
contains the high proficiency speakers. The phonetic bigram models are trained
as before, with models in 7 languages and 3 proficiency classes. Profiles of the
testing and training data for these experiments are shown in Table 7.

Table 7. Number of speakers, utterances, audio length, and average speaker proficiency
score per proficiency class (C-1 to C-3)

nspk nutt τutt (min) ave. prof
C-1 C-2 C-3 C-1 C-2 C-3 C-1 C-2 C-3 C-1 C-2 C-3

training 3 12 4 146 564 373 23.9 82.5 40.4 1.33 2.00 2.89
testing 1 5 1 78 477 124 13.8 59.0 13.5 1.33 2.00 2.89

Similar to the experiments in accent identification, we compared the applica-
tion of 6 versus 7 phone recognizers. As the confusion matrix in Table 8 indicates,
the addition of one language leaves to small improvement over our results using
models in 6 languages. It reveals that the phonetic bigram models trained in
Chinese cause the system to correctly identify more of the class 2 utterances at
the expense of some class 3 utterances, which are identified as class 2 by the
new system. Our results indicate that discriminating among proficiency levels
is a more difficult problem than discriminating between native and non-native
speakers. The 2–way classification between class 1 and class 3 gives 84% accu-
racy, but classification accuracy in the 3–way proficiency classification approach
achieves 59% in the 6-language experiment and 61% using the additional seventh
phone recognizer.

5.6 Classification of Language

In this section, we apply the MPM-pp framework to the problem of multi-
classification of four languages: Japanese (JA), Russian (RU), Spanish (SP)
and Turkish (TU). We elected to use a small number of phone recognizers in
languages other than the four classification languages in order to duplicate the
circumstances common to our identification experiments, and to demonstrate a
degree of language independence which holds even in the language identification
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Table 8. Confusion matrix for 3-way proficiency classification using 6 versus 7 phone
recognizers

Phonetic 6 languages 7 languages
model

C-1 C-2 C-3 C-1 C-2 C-3
C-1 8 3 19 8 5 17
C-2 8 41 61 6 53 51
C-3 2 12 99 1 20 92

domain. Phone recognizers in Chinese (CH), German (DE) and French (FR),
with phone vocabulary sizes of 145, 47 and 42, respectively, were borrowed from
the GlobalPhone project. The data for this classification experiment, were also
borrowed from the GlobalPhone project but not used in training the phone rec-
ognizers. It was divided up as shown in Table 9. Data set 1 was used for training
the phonetic models, while data set 4 was completely held-out during training
and used to evaluate the end-to-end performance of the complete classifier. Data
sets 2 and 3 were used as development sets while experimenting with different
decision strategies.

Table 9. Number of speakers, utterances, and audio length per language

Set JA RU SP TU
nspk 1 20 20 20 20

2 5 10 9 10
3 3 5 5 5
4 3 5 4 5

∑
nutt all 2294 4923 2724 2924∑
τutt all 6 hrs 9 hrs 8 hrs 7 hrs

For training the phonetic bigram models, utterances from set 1 in each Lj ∈
{JA, RU, SP, TU} were decoded using each of the three phone recognizers PRi ∈
{CH, DE, FR}. 12 separate trigram models were constructed with Kneser/Ney
backoff and no explicit cut-off. The training corpora ranged in size from 140K to
250K tokens. Trigram coverage for all 12 models fell between 73% to 95%, with
unigram coverage below 1%.

We first benchmarked accuracy using our lowest average perplexity decision
rule. For comparison, we constructed a separate 4-class multi-classifier, using
data set 2, for each of the four durations τk ∈ {5s, 10s, 20s, 30s}; data set 3 was
used for cross-validation.

Our multi-classifier combined the output of multiple binary classifiers using
error-correcting output coding (ECOC). A class space of 4 language classes in-
duces 7 unique binary partitions. For each of these, we trained an independent
multilayer perceptron (MLP) with 12 input units and 1 output unit using scaled
conjugate gradients on data set 2 and early stopping using the cross-validation
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data set 3. In preliminary tests, we found that 25 hidden units provide adequate
performance and generalization when used with early stopping. The output of
all 7 binary classifiers was concatenated together to form a 7-bit code, which
in the flavor of ECOC, was compared to our four class codewords to yield a
best class estimate. Based on total error using the best training set weights and
cross-validation set weights on the cross-validation data, we additionally dis-
carded those binary classifiers which contributed to total error; these classifiers
represent difficult partitions of the data.

With phone recognizers drawn from the baseline set, classification accuracy
using lowest average perplexity led to 94.01%, 97.57%, 98.96% and 99.31% ac-
curacy on 5s, 10s, 20s and 30s data respectively, while with ECOC/MLP classi-
fication accuracy improved to 95.41%, 98.33%, 99.36% and 99.89% respectively.

5.7 Classification of Attentional State

The following experiments investigate the power of the MPM-pp approach to
identify the attentional state of a speaker. More particularly, we aim to discrim-
inate the interaction of two human beings from the interaction of one human
with a robot. The data collection took place at the Interactive Systems Labs
and mimics the interaction between two humans and one robot. One person,
acting as the host, introduces the other person, acting as a guest, to the new
household robot. Parallel recordings of audio and video focus on the host to
determine if the host addresses the guest or the robot. In order to provoke a
challenging scenario, the speakers were given instructions to imagine that they
introduce the new household robot to the guest by explaining the various skills
of the robot, for example to bring drinks, adjust the light, vacuum the house,
and so on. 18 recording sessions of roughly 10 min length each were collected and
manually transcribed. All utterances were tagged as command, when the robot
was addressed or as conversation, when the guest was addressed. 8 sessions were
used for training, 5 for development, and the remaining 5 for evaluation [41].

We compare the MPM-pp approach to a speech-based approach that applies
a combination of higher-level speech features, such as sentence length (assum-
ing that commands to a robot are shorter than conversations with another hu-
man), topic occurrence (assuming that commands are more likely to contain
the word ”robot”), number of imperatives (assuming that commands are rather
formulated in imperative form), and perplexity calculation based on a ”com-
mand” language model and a ”conversation” language model (assuming that
commands give lower perplexity on the former language model and conversations
give lower on the latter). The results from this selection are labeled as ”Feature
Combi”. The MPM-pp approach features the above described 12 GlobalPhone
recognizers.

The results in Table 10 shows F-measure and classification accuracy. The
calculation of the F-measure is based on the assumption that it is more important
to detect when the robot was addressed. The results indicate that the MPM-pp
approach slightly outperforms the combination of higher-level speech features,
which is somewhat surprising given the amount of information that is available
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to the speech-feature combination. Also note, that the MPM-pp approach does
not require any manually transcribed or tagged data. However, both speech-
based methods are significantly outperformed by the visual estimation of the
speaker’s head orientation. The combination of audio and visual information
leads to additional small gains [41].

Table 10. Attentional state classification with audio and visual estimation

Estimation Precision Recall F-Measure Classification

Feature Combi FC 0.19 0.91 0.31 49
MPM-pp 0.21 0.79 0.33 53.5
Head Pose (HP) 0.57 0.81 0.67 90
FC + HP 0.65 0.81 0.72 92

5.8 Language Dependencies

Implicit in our classification methodology is the assumption that phone strings
originating from phone recognizers trained on different languages yield comple-
mentary information. In the following experiments we explore the influence of
the variation of the phone recognizers, and investigate to what extend the per-
formance varies with the number of languages covered.

We conducted one set of experiments to investigate whether the reason for the
success of the multilingual phone string approach is related to the fact that the
different languages contribute useful classification information or that it simply
lies in the fact that different recognizers provide complementary information.
If the latter were the case, a multi-engine approach in which phone recognizers
trained on the same language but on different channel or speaking style condi-
tions might do a comparably good job. To test this hypothesis, we had trained
three different phone recognizers solely on a single language, namely English but
on various different channel conditions (telephone, channel-mix, clean) and dif-
ferent speaking styles (highly conversational, spontaneous, planned) using data
from Switchboard, Broadcast News, and Verbmobil. The experiments were car-
ried out on matched conditions on all distances for 60 second chunks for the
speaker identification task. To compare the three single-language engines to the
multiple-language engines, we generated all possible language triples out of the
set of 12 languages ((12

3 ) = 220 triples) and calculated the average, minimum
and maximum performance over all triples. The results are given in Table 11.

The results show that the multiple-engine approach lies in all but one case
within the range of the multiple-language approach. However, the average per-
formance of the multiple-language approach always outperforms the multiple-
engine approach. This indicates that most of the language triples achieve better
results than the single language multiple-engines. From these results we draw the
conclusion that multiple English language recognizers provide less useful infor-
mation for the classification task than do multiple language phone recognizers.
This is at least true for the given choice of multiple engines in the context
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Table 11. Multiple languages versus single-language multiple engines [SIDrates %]

Dis Multiple Languages Multiple Engines

Dis 0 94.6 (80.0-100) 93.3
Dis L 93.1 (80.0-96.7) 86.7
Dis 1 89.5 (76.7-96.7) 86.7
Dis 2 93.6 (86.7-96.7) 76.7
Dis 4 90.8 (73.3-96.7) 86.7
Dis 5 92.0 (73.3-96.7) 83.3
Dis 6 89.5 (60.0-96.7) 63.3
Dis 8 87.2 (63.3-96.7) 63.3

of speaker identification. We also conducted experiments, in which the multi-
engine recognizers were combined with the multilingual recognizers, but did not
see further improvements [56]. The fact that the multiple engines were trained
on English, i.e. the same language which is spoken in the speaker identification
task, whereas the multiple languages were trained on 12 languages but English,
makes the multiple-language approach even more appealing as it indicates a
great potential for portability to speaker characteristic classification tasks in
any language.

Fig. 6. Classification rate over number of phone recognizers

In the final set of experiments, we investigated the impact of the number of
languages, i.e. the number of phone recognizers on speaker identification per-
formance. Figure 6 plots the speaker identification rate over the number k of
languages used in the identification process on matched conditions on 60 seconds
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data. The performance is given in average over the k out of 12 language k-tupel
for all distances. The results indicate that the average speaker identification rate
increases for all distances with the number of involved phone recognizers. For
some distances a saturation effect takes place after 6 languages involved (dis-
tance 0 and 1), for others distances even adding the 12th language has a positive
effect on the average performance (distance 4, 6, L). Figure 6 shows that the
maximum performance of 96.7% can already be achieved using two languages.
Among the total of (12

2 ) = 66 language pairs, CH-KO and CH-SP gave the best
results. We were not able to derive an appropriate strategy to predict the best
language tupels. Therefore, it is comforting that the increasing average indi-
cates that the chances of finding suitable language tupels get better with the
number of applied languages. While only 4.5% of all 2-tupels achieved highest
performance, 35% of 4-tupels, 60% of all 6-tupels, and 88% of all 10-tupels gave
optimal performance. We furthermore analyzed if the performance is related to
the total number of phones used for the classification process rather than the
number of different engines, but did not find evidence for such a correlation.

6 Conclusion

This chapter briefly outlined existing speech-driven applications in order to mo-
tivate why the automatic recognition of speaker characteristics is desirable. After
categorizing relevant characteristics, we proposed a taxonomy, which differenti-
ates between physiological and psychological aspects, and furthermore considers
the individual speaker as well as the collective. The language-dependent charac-
teristics language, accent, dialect, idiolect, and sociolect were described in more
detail. The brief overview of classification approaches was complemented by a
practical example of our implementation of a speaker characteristics identifi-
cation system. This implementation applies a joint framework of multilingual
phone sequences to classify various speaker characteristics from speech, such as
identity, gender, language, accent and language proficiency, as well as atten-
tional state. In this system the classification decisions were based on phonetic
n-gram models trained from phone strings, performing a simple minimum per-
plexity rule. The good classification results validated this concept, indicating
that multilingual phone strings can be successfully applied to the classification
of various speaker characteristics. The evaluation on a far-field speaker identifi-
cation task proved the robustness of the approach, achieving 96.7% identification
rate under mismatching conditions. Gender identification gave 94% classification
accuracy. We obtained 97.7% discrimination accuracy between native and non-
native English speakers and 95.5% language identification rate on 5 sec chunks
discriminating 4 languages. In the classification of the attentional state, the
MPM-pp approach performs slightly better than a combination of higher-level
speech features, achieving 53.5% classification rate. Furthermore, we compared
the performances between multi-lingual and multi-engine systems and examined
the impact of the number of involved languages on classification results. Our
findings confirm the usefulness of language variety and indicate a language in-
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dependent nature of our experiments. These encouraging results suggest that
the classification of speaker characteristics using multilingual phone sequences
could be ported to any language. In conclusion, we believe that the classification
of speaker characteristics has advanced to a point where it can be successfully
deployed into real-world applications. This would allow for more personalization,
customization, and adaptation to the user and thus meet our desire for a more
human-like behavior of speech-driven automated systems.
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60. Navrátil, J.: Spoken language recognition - a step towards multilinguality in speech
processing. IEEE Trans. Audio and Speech Processing 9(6), 678–685 (2001)

61. Parandekar, S., Kirchhoff, K.: Multi-stream language identification using data-
driven dependency selection. In: Proc. of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) (2003)

62. Torres-Carrasquillo, P., Reynolds, D., Deller, Jr., J.: Language identification using
gaussian mixture model tokenization. In: Proc. of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP) (2002)

63. Eady, S.J.: Differences in the f0 patterns of speech: Tone language versus stress
language. Language and Speech 25(1), 29–42 (1982)

64. Schultz, T., Rogina, I.A.W.: Lvcsr-based language identification. In: Proc. of the
International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Atlanta, Georgia, IEEE (1996)

65. Schultz, T.: Globalphone: A multilingual text and speech database developed at
karlsruhe university. In: Proc. of the International Conference on Spoken Language
Processing (ICSLP), Denver, CO (2002)

66. Jin, Q., Schultz, T., Waibel, A.: Speaker Identification using Multilingual Phone
Strings. In: Proc. of the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Orlando, FL (2002)



74 T. Schultz

67. NIST: Speaker recognition evaluation plan. Retrieved December, 2006 (1999) from
http://www.itl.nist.gov/iaui/894.01/spk99/spk99plan.html

68. Tomokiyo-Mayfield, L.: Recognizing Non-Native Speech: Characterizing and
Adapting to Non-Native Usage in LVCSR. PhD thesis, CMU-LTI-01-168, Lan-
guage Technologies Institute, Carnegie Mellon, Pittsburgh, PA (2001)

69. Schultz, T., Jin, Q., Laskowski, K., Tribble, A., Waibel, A.: Speaker, accent, and
language identification using multilingual phone strings. In: Proceedings of the
Human Language Technologies Conference (HLT), San Diego, Morgan Kaufman,
San Francisco (2002)

70. Schultz, T., Jin, Q., Laskowski, K., Tribble, A., Waibel, A.: Improvements in non-
verbal cue identification using multilingual phone strings. In: Proceedings of the
40nd Annual Meeting of the Association for Computational Linguistics, Philadel-
phia, PA, The Association for Computational Linguistics (2002)

http://www.itl.nist.gov/iaui/894.01/spk99/spk99plan.html

	Speaker Characteristics
	Introduction
	Why? - Applications to Speaker Characteristics
	Human-Computer Interaction Systems
	Human-Centered Systems
	Adaptation of System Components
	Summary

	What? A Taxonomy of Speaker Characteristics
	Language-Dependent Speaker Characteristics

	How? - Automatic Classification of Speaker Characteristics
	Speaker Recognition
	Language Identification

	A Classification System for Speaker Characteristics
	Multilingual Phone Sequences
	Classification of Speaker Identity
	Classification of Gender
	Classification of Accent
	Classification of Proficiency Level
	Classification of Language
	Classification of Attentional State
	Language Dependencies

	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




